On the Edge-graceful spectra of cycles with one chord and dumbbell graphs

Sin-Min Lee,
Department of Computer Science
San Jose State University
San Jose, California 95192 U.S.A.
lee@cs.sjsu.edu

Kuo-Jye Chen,
Department of Mathematics
Changhua National University of Education
Chanhua, Taiwan, republic of China

Yung-Chin Wang
Institute of Mathematics
Academia Sinica,
Taiwan, Republic of China

ABSTRACT Let G be a (p, q)-graph and k≥0. A graph G is said to be k-edge graceful if the edges can be labeled by k, k+1,..., k+q-1 so that the vertex sums are distinct, mod p. We denote the set of all k such that G is k-edge graceful by egl(G). The set is called the edge-graceful spectrum of G. In this paper the problem of which sets of natural numbers are the edge-graceful spectra of two types of (p, p+1)-graphs is studied.

1. Introduction. Given an integer k ≥0, a graph G = (V, E) with p vertices and q edges is said to be k-edge graceful if there is a bijection f : E →{k, k+1, k+2,..., k+q-1} such that the induced mapping f+ : V →Zp, given by f+(u) =Σ{f(u,v): (u,v) in E} (mod p) is a bijection.

Figure 1 shows that K4 is k-edge graceful for k =1, 2, 3, 4.

The study of 1-edge-graceful graphs was initiated by S.P. Lo [17]. Edge-graceful labeling can be viewed as the dual concept of graceful labeling. Lee, Lee, Murthy [5] showed that if G is a (p, q)-graph with p ≡ 2 (mod 4) then G is not 1-edge-graceful.

CONGRESSUS NUMERANTUM 170 (2004), pp. 171-183
We have the following necessary condition for the k-edge graceful graph which is a generalization of Lo’s condition in [17]

Theorem 1. If a (p,q)-graph G is k-edge-graceful then it satisfies the condition

\[q(q+2k-1) = \frac{p(p-1)}{2} \pmod{p} \]

The theory of 1-edge graceful graphs is completely different from other k-edge graceful graphs. For example, trees of order 4 are 2-edge graceful but not 1-edge-graceful. (Figure 2)

In this paper we consider connected (p,p+1)-graphs. We consider two types of k-edge graceful (p,p+1) graphs: cycle with a chord and dumbbell graph D(a,b) where a+b=p. Assume the vertices of cycle are \(v_1, v_2, \ldots, v_p\) and the chord connect vertex \(v_i\) with \(v_j\). We denote this graph by \(C_p(r)\). The dumbbell graph D(a,b) is formed by join two disconnected cycles \(C_a\) and \(C_b\) by an edge (Figure 3).
We denote the set of all integers $k > 0$ such that G is k-edge graceful by $\text{egl}(G)$. The set is called the edge-graceful spectrum of G. In this paper the problem of which sets of natural numbers are the edge-graceful spectra of $(p,p+1)$-graphs is studied.

1-edge-graceful graphs are investigated in [1,3,4,5,6,7,8,9,10,11,12,13, 14,18,19,20,21,22,23,24]. Some k-edge graceful graphs are considered in [15,16]. A good account on other graph labeling problems can be found in the dynamic survey of Gallian [2].

2. Edge-graceful Index spectrum of a cycle with a chord.

We denote the set of natural numbers by N.

By Theorem 1, a necessary condition for the $(p,p+1)$-graph G to be k-edge-graceful is

$$(p+1)(p+2k) \equiv p(p-1)/2 \pmod{p} \implies 2k \equiv (p-1)/2 \pmod{p}$$

Furthermore, consider the condition for each case as follows:

Case 1. $p = 2s + 1$: $2k \equiv s(2s+1) \pmod{2s+1} \implies 2k \equiv 0 \pmod{2s+1}$

$\implies k \equiv 0 \pmod{p}$

Case 2. $p = 2s$: $2k \equiv s(2s-1) \pmod{2s} \implies 2k \equiv -s \pmod{2s}$

$\implies 2k \equiv s \pmod{2s}$

(1) odd s: there is no k satisfy the congruence

(2) even s: Let $s = 2t$, then $2k \equiv 2t \pmod{4t}$

Thus $k \equiv t \pmod{2t}$, i.e. $k \equiv s/2 \pmod{s} \implies k \equiv p/4 \pmod{p/2}$

Summarizing the observations above, we propose the following conjecture

Conjecture. Let G be the $(p,p+1)$-graph

(A) when p is odd, $\text{egl}(G) = \{sp: s=0,1,2,\ldots}\}$

(B) when p is even

and (1) $p \equiv 2 \pmod{4}$, $\text{egl}(G) = \emptyset$.

(2) $p = 4t$, $\text{egl}(G) = \{np/2+p/4: n=0,1,2,\ldots\}$

Now we want to show that the conjecture is true for the cycle with one chord for odd order.
Theorem 2. If G is a cycle with one chord of odd order p, then $\text{egl}(G) = \{\text{sp}: s = 0, 1, 2, 3, \ldots\}$

Proof. It suffices to show that $C_p(r)$ is 0-edge-graceful for any $r > 2$. We label the chord with 0, and label the edges of a cycle clockwise consecutively by 1, 2, ..., p. Then we see that the vertices have label 1, 3, 5, ..., 0, 2, 4, ..., $p - 1$. It is clear that the label is 0-edge-graceful (Figure 4).

If we add each edge-label by sp, we can have a sp-edge-graceful labeling. Thus $\text{egl}(C_p(r)) = \{\text{sp}: s = 0, 1, 2, 3, \ldots\}$.

Example 1.

![Figure 4.](image)

Example 2. Figure 5 shows that $C_4(3)$ is 1-edge-graceful and 3-edge-graceful. For integer $n \geq 1$, if we add $4n$ to each edge label then we can show that it become $4n + 1$-edge-graceful and $4n + 3$-edge-graceful. Thus we conclude the edge-graceful spectrum of $C_4(3)$ is $\text{egl}(C_4(3)) = \{1, 3, 5, 7, 9, \ldots, 2n + 1, \ldots\}$.

![Figure 5.](image)

$C_4(3)$ is 1-edge-graceful \quad $C_4(3)$ is 3-edge-graceful

Example 3. Figures 6 shows that $C_8(4)$ is 2-edge-graceful with two different labelings and Figure 7 demonstrates that it is 6-edge-graceful.
$C_8(4)$ is 2-edge-graceful

$C_8(4)$ is 2-edge-graceful

Figure 6.

$C_8(4)$ is 6-edge-graceful

Figure 7

Example 4. Figures 8 shows that $C_8(5)$ is 2-edge-graceful and 6-edge-graceful.

$C_8(5)$ is 2-edge-graceful

$C_8(5)$ is 6-edge-graceful

Figure 8.

175
Example 5.

\[C_{12}(7) \text{ is 3-edge-graceful} \quad \text{and} \quad C_{12}(7) \text{ is 9-edge-graceful} \]

Figure 9

In general, it is difficult to find the k-edge graceful labeling for even cycle with a chord. At present, we can solve the following type of even cycle with a chord.

Theorem 3. The cycle with one chord \(C_{4n}(n+1) \) has edge-graceful spectrum \(\text{egl}(C_{4n}(n+1)) = \{ n+4nt, 3n+4nt: t=0,1,2,\ldots \} \)

Proof. We want to show that the cycle with one chord \(C_{4n}(n+1) \) is n-edge graceful and 3n-edge-graceful.

For the case of n-edge-graceful labeling, we label the edges of the cycle begin from \((v_1, v_2), (v_3, v_4), (v_5, v_6), \ldots, (v_{4n-1}, v_{4n}) \) clockwise by \(\{ n, n+1, n+2, \ldots, 3n-1 \} \). Next we label \((v_2, v_3), (v_4, v_5), (v_6, v_7), \ldots, (v_{4n-2}, v_{4n-1}), (v_{4n}, v_1) \) clockwise by \(\{ 3n+1, 3n+2, \ldots, 5n \} \) and next to the edges already labelled.

We see that the above edge labeling will contribute vertices with labels from 1 to 4n-1 and 6n (\(\equiv 2n \mod 4n \)).

Now we label 3n to the chord which connects the two vertices \(v_1 \) and \(v_{n+1} \) which have label \(n \) and 6n (\(\equiv 2n \mod 4n \)) respectively. Now after we add this new edge label, we change the labelings of these two vertices from \(n \) to \(4n (\equiv 0 \mod 4n) \) and from \(6n (\equiv 2n \mod 4n) \) to \(9n (\equiv n \mod 4n) \).

Figure 10 shows the labeling scheme for \(C_8(3) \) and \(C_{12}(4) \).
For the 3n-edge-graceful labeling case, the solution is almost the same as above. we label the edges of the cycle begin from $(v_{n+1}, v_{n+2}), (v_{n+3}, v_{n+4}), \ldots, (v_{4n-1}, v_{4n})$, $(v_1, v_2), (v_3, v_4), \ldots, (v_{n-1}, v_n)$ clockwise by $\{3n, 3n+1, 3n+2, \ldots, 5n-1\}$.

Next we label $(v_{n+2}, v_{n+3}), (v_{n+4}, v_{n+5}), \ldots, (v_{4n-2}, v_{4n-1}), (v_{4n}, v_1), (v_3, v_4), (v_5, v_4), \ldots, (v_3, v_4)$ clockwise by $\{5n+1, \ldots, 7n\}$.

We see that the above edge labeling will contribute vertices $\{v_{n+2}, v_{n+3}, v_{n+4}, \ldots, v_{4n-1}, v_{4n}, v_{1}, \ldots, v_{n}, v_{n+1}\}$ with labels in the order $\{1, 2, \ldots, 4n-2, 4n-1, 2n\}$.

Now we label 5n to the chord which connects the two vertices v_1 and v_{n+1} which have label 3n and 2n respectively. Now after we add this new edge label 5n, we change the labelings of these two vertices from 3n to 8n($=0$ mod 4n) and from 2n to 7n($=3n$ mod 4n).

Figure 11 shows the labeling scheme for $C_8(3)$ and $C_{12}(4)$. □
3. Edge-graceful spectra of dumbbell graphs.

Theorem 4. For any odd \(m \geq 3 \), and even \(n \geq 4 \), the edge-graceful spectrum of the dumbbell graph \(D(m,n) \) is \(\text{egl}(G) = \{s(m+n): s=0,1,2,\ldots\} \)

Proof. It suffices to show that \(D(m,n) \) is 0-edge-graceful. We provide here two different 0-edge-graceful labelings:

Method 1. We start at the odd cycle \(C_m \) by labeling 0 to \(m-1 \) to each edge anticlockwise consecutively from one side of the connected vertex. Then we label \(m \) to the connected edge. Finally we label \(m+1 \) to \(m+n \) to each edge of the cycle \(C_n \) clockwise from one side of the connected vertex.

The vertices of \(C_m \) has induced labels \(\{1,3,5, 2m-1\} \) and the vertices of \(C_n \) has induced labels \(\{2m+1,\ldots,n+m= 0 \pmod{m+n}, 2,4,6,\ldots,m+n-1\} \)

Method 2. We start at the even cycle \(C_n \) by labeling 0 to \(n-1 \) to each edge clockwise consecutively from one side of the connected vertex. Then we label \(n \) to the connected edge. Finally we label \(n+1 \) to \(m+n \) to each edge of the cycle \(C_m \) anticlockwise from one side of the connected vertex.

The vertices of \(C_m \) has induced labels \(\{1,3,5, 2m-1\} \) and the vertices of \(C_n \) has induced labels \(\{2m+1,\ldots,n+m= 0 \pmod{m+n}, 2,4,6,\ldots,m+n-1\} \)

Now for each integer \(s \geq 1 \), we add \((m+n)s \) to each edge label of the above edge-labeling we obtain a \((m+n)s \)-edge-graceful labeling of \(D(m, n) \).

Corollary 5. For any integer \(n \geq 2 \), the edge-graceful spectrum of dumbbell graph \(D(2n,2n+1) \) is \(\{(4n+1)s: s=1,2,\ldots\} \)

We illustrate the above result for \(n=2 \).

Example 6.

![Diagram of D(4,5) is 0-edge-graceful](image)

Figure 12.

Corollary 6. For any integer \(n \geq 2 \), the edge-graceful spectrum of the dumbbell graph \(D(2n-1,2n) \) is \(\{(4n-1)s: s=1,2,\ldots\} \)

Example 7. We illustrate the above result for \(n=2 \) and \(3 \) (Figure 13).
In particular, we have

Corollary 7. For any even integer \(n \geq 2 \), the edge-graceful spectrum of the dumbbell graph \(D(3,n) \) is \(\text{egl}(D(3,n))=\{s(3+n)\}: s=0,1,2,\ldots \} \)

Example 8. We provide here two different 0-edge-graceful labelings of \(D(3,4) \).

Method 1

![Method 1 diagram](image1)

\(D(3,4) \) is 0-edge-graceful

Method 2

![Method 2 diagram](image2)

\(D(3,4) \) is 0-edge-graceful

Figure 13.
Theorem 8. For any integer \(n \geq 2 \), the edge-graceful spectrum of dumbbell graph \(D(2n,2n) \) is \(\{2n s+n : s=0,1,2,\ldots\} \).

Proof. For convenience, we will index all vertices of the dumbbell graph \(D(2n,2n) \) by the following way.

For the two vertices which connects the two cycles \(C_{2n} \) by an edge, we index them by \(v_1 \) and \(v_{2n+1} \), respectively. The other vertices of the cycle \(C_{2n} \) which contains \(v_1 \) are indexed by \(v_2 \) to \(v_{2n} \) clockwise from the vertex next to \(v_1 \). The other vertices of the cycle \(C_{2n} \) which contains \(v_{2n+1} \) are indexed by \(v_{2n+2} \) to \(v_{4n} \) counterclockwise from the vertex next to \(v_{2n+1} \).

Now we are ready to give the edge labeling. Before that, we divide all edges into five sets:

\[
S_1 = \{ (v_1, v_2), (v_2, v_1), (v_1, v_{2n+1}), (v_{2n+1}, v_{2n+2}), (v_{2n+2}, v_{2n+1}) \}, \\
S_2 = \{ (v_3, v_4), (v_5, v_6), \ldots, (v_{2n-3}, v_{2n-2}), (v_{2n-2}, v_{2n-1}) \}, \\
S_3 = \{ (v_2, v_3), (v_4, v_5), \ldots, (v_{2n-4}, v_{2n-3}), (v_{2n-3}, v_{2n-2}) \}, \\
S_4 = \{ (v_{2n+3}, v_{2n+4}), (v_{2n+4}, v_{2n+5}), \ldots, (v_{4n-3}, v_{4n-2}) \}, \\
S_5 = \{ (v_{2n+2}, v_{2n+3}), (v_{2n+4}, v_{2n+5}), \ldots, (v_{4n-4}, v_{4n-3}), (v_{4n-2}, v_{4n-1}) \}.
\]

Then we label \{n+1, n+2, \ldots, 2n-2, 2n-1\} to \(S_2 \) clockwise. We label \{3n+1, 3n+2, \ldots, 4n-2, 4n-1\} to \(S_1 \) clockwise. We label \{2n+1, 2n+2, \ldots, 3n-2, 3n-1\} to \(S_4 \) counterclockwise. We label \{4n+1, 4n+2, \ldots, 5n-2, 5n-1\} to \(S_5 \) counterclockwise. Finally for edges in \(S_3 \), we label \((v_1, v_2)\) by \(5n \), \((v_{2n}, v_1)\) by \(4n \), \((v_1, v_{2n+1})\) by \(3n \), \((v_{2n+1}, v_{2n+2})\) by \(2n \), \((v_{4n}, v_{2n+1})\) by \(n \).

We can see that such an edge labeling contribute vertices of the cycles \(C_{2n} \) containing \(v_1 \) from 0 to 2n-1, vertices of the cycles \(C_{2n} \) containing \(v_{2n+1} \) from 2n to 4n-1. □

Example 14. We have a 4-edge-graceful labeling of \(D(8,8) \). (Figure 15).

\[\text{D}(8,8) \text{ is 4-edge-graceful} \]

Figure 15.

Finally, we want to point out there is an interesting connection between the cycle with a chord \(C_{4n}(2n+1) \) and the dumbbell graph \(D(2n,2n) \).
Theorem 9. An n-edge-graceful labeling of $C_{4n}(2n+1)$ can be obtained from a n-edge-graceful labeling of $D(2n, 2n)$.

Example 15 The following figure 16 illustrate how to get a 7-edge-graceful labeling of $C_{28}(15)$ from a 7-edge-graceful labeling of $D(14, 14)$. The way is deleting the edges (v_1, v_{14}), (v_{15}, v_{16}), and add two edges (v_{15}, v_{14}), (v_1, v_{16}) with the original labeling of (v_1, v_{14}), (v_{15}, v_{16}) respectively. We observe the vertex labels of v_1, v_{15} in $D(14, 14)$ is interchange in $C_{28}(15)$. The same result happens on the case of $(7+14k)$-edge-graceful labeling.

![Figure 16](image)

Corollary 10. For any integer $n \geq 2$, the edge-graceful spectrum of the cycle with a chord $C_{4n}(2n+1)$ is $\text{egl}(C_{4n}(n+1)) = \{ 2n s + n : s = 0, 1, 2, \ldots \}$

Acknowledgement. We want to express our sincere thanks to Prof. Harris Kwong for his helpful criticism and suggestion.
References

